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ABSTRACT: In tangential response to concerns voiced by Dmitri Tymoczko (2013), I propose a revision 

to the Filtered Point-Symmetry (FiPS) algorithm that would weaken the symmetry constraint and thus 

divorce the act of quantization from the concept of maximal evenness. I construct an asymmetric Filtered 

Point (FiP) configuration using this new algorithm and compare its analytic yield to that of the Tonnetz 

and the  FiPS configuration, respectively, using Chopin’s Prelude Op. 28 No. 92 23 → 7 → 7 → 1 → 1  

in E major as a case study. I find that my new configuration suggests a unique hearing of the passage. 
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I. Background and Preliminaries 

A music theorist’s first instinct, given a passage of 19th or 20th-century music, may well be to 

analyze the pitch-classes involved. Often these pitch-classes belong to some well-known ​set​ or other—a 

whole-tone or octatonic collection, or some diatonic or pentatonic scale, or some modulatory combination 

thereof. And if this turns out to be the case and the music does fit some collection or sequence of 

collections, then the music theorist might feel some satisfaction at being able to ​categorize​ that passage, 

to set it in contrast to some other work which uses some other sequence of pitch-class sets. 

It is within this narrative of manufactured contrast that Clough and Douthett (1991) attempt to 

“shift the usual perspective and attend to ​similarities​” among these collections using the concept of 

Maximally Even (ME) sets.  ME sets have multiple equivalent definitions.  The most relevant definition 1 2

to this paper, known as the J-function, is as follows: 

Suppose we split the octave into ​c​ equal parts, which we will call ​chromatic ​pitch classes. We are 

given some number ​d​ of ​diatonic​ notes to arrange in our chromatic array. We intuit that this ordeal may 

need a bit of counting, so let’s number our chromatic notes from 0 to ​c–1​. And, to start, let’s place some 

diatonic note on the chromatic note that has index ​m​. Now we can algorithmically generate the ​k​th note of 

our maximally even arrangement with the following function: 

(k) ⌋Jm
c, d

 = ⌊ d
ck+m  

In essence, the J-function simply quantizes one set to one another. Ignoring ​m​ for a second, we 

take the following two sets:  

and​  , , ... , }D = { d
0

d
1   d

(d−1)  , , ... , }C = { c
0

c
1   c

c−1  

and round each member of ​D​ down to the nearest member of ​C​.   3

1 Clough and Douthett (1991) “Maximally Even Sets” ​Journal of Music Theory ​Vol. 35.1 93 
2 ​Ibid ​96; consider as well the statistical definition, in which the ME set is that in which the variance of all distances 
is optimized to a minimum. 
3 Bringing ​m ​back to the equation would mean adding a factor of 1/gcd(c,d) to each member of ​D​. 
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This function yields some familiar yet non-obvious results. The maximally even arrangement of 

seven notes across twelve pitch classes (which we notate ) is the diatonic collection!27 → 1 25 → 1  

yields the pentatonic collection; and  yields the octatonic collection.28 → 1  

But to really appreciate the strength of these results, we must make three more conceptual leaps.  

First: Clough and Douthett define an nth-order ME set as an iterated J-function with the following 

form: 

(k) (k)))Jd , d , ..., d0 1 n

m , m , ..., m1 2 n
 

= J (J ( ... m1
d , d0 1

m2
d , d1 2

 
 

So now we can look at something like , which turns out to be a major triad when all the23 → 7 → 1  

circles are aligned at ​m​x​ = 0.  4

Second: while we’re on the topic, let’s take a closer look at ​m​. Every integer value of ​m​x​ increases 

every element of D by , which is a fancy way of notating the minimum amount needed to1
gcf (d , d )x−1 x

 

change the output of our function.  If we treat ​m​ as a continuous increasing variable, we can cycle through 5

every possible ME set for a given configuration.  now gives us not only the diatonic collection,27 → 1  

but a cycle of diatonic collections moving along the circle of fifths!  6

Third: as with most intuitive mathematical concepts, there exists quite a robust visual 

representation that manages to package all the information we’ve encoded in the J-function into a much 

more palatable form. I have reproduced below an example from Plotkin (2019).  7

We refer to these geometric forms of the J-Function as Filtered Point-Symmetry (FiPS) 

configurations. We see that ​c​ is the number of points arranged on the outermost circle; the various iterated 

4 Here, ​x​ is a placeholder variable for the subscript corresponding to whichever circle we’re looking at. 
5 “gcf” indicates greatest common factor.  
6 Readers familiar with Julian Hook’s signature transformations might notice a structural similarity—indeed, the 
similarity is nontrivial—the signature transformation functions are embedded in rotations of the 7-filter. This is 
explored in depth in Plotkin and Douthett (2013), “Scalar context in musical models” ​Journal of Mathematics and 
Music​ Vol. 7.2 106. 
7 Plotkin (2019), “Chord Proximity, Parsimony, and Analysis with Filtered Point-Symmetry” ​Music Theory Online 
Vol. 25.2 
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values of ​d​ correspond to the number of points on the other circles. Incrementing ​m​ on some layer 

corresponds to turning that circle clockwise (the direction is chosen arbitrarily). A point on some circle 

shoots a beam into the nearest point counterclockwise (i.e. opposite the direction of rotation) on the next 

circle, and so on, until the beam reaches some point on the outermost circle, whose index is output as a 

pitch-class. 

Fig. 1: a  FiPS configuration. Reproduced from Plotkin (2019)23 → 7 → 1  

The appeal of FiPS is evident: it is simple to construct, and modular by nature. The machine’s 

kinematics are continuous and thus define and ensure a certain measure of parsimony in voice-leading 

from one output to the next.  And crucially, the S of FiPS implies that the near-symmetric sets of notes so 8

common in Western performance practice are derivable from a deeper symmetry. If we buy into these 

lines of reasoning, then we might believe that Clough and Douthett really did find a unifying mechanism 

in ME sets, one that underlies the wild world of late-Romantic tonality. 

8 See Plotkin and Douthett (2013) “Scalar context in musical models” ​Journal of Mathematics and Music ​Vol. 7.2 
111-112 for a much more careful discussion of parsimony. 
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But beautiful, convenient results should always arouse suspicion. FiPS is but one contender 

among many ‘unifying theories’ of harmonic or tonal space. Tymockzo (2013) outlines conceptual 

limitations to FiPS as opposed to Callender/Quinn/Tymoczko’s (2008) voice-leading/OPTIC spaces:  9

1) Scalar context is ill-defined in FiPS.  For example, FiPS cannot model major triads 10

existing directly in chromatic space, but must introduce an intermediate 7-division circle 

that does not necessarily have analytical significance. 

2) FiPS cannot easily model scales that are not ME sets, even if they are commonly used 

alongside ME sets—e.g. the acoustic scale. 

3) FiPS cannot model certain voice crossings and runs into issues modeling complex voice 

leadings. 

4) Any FiPS configuration can be retrofit into a path along Tymocko’s voice-leading spaces, 

but not the other way around—this suggests a relative lack of generality. 

5) FiPS, being an exercise in abstract algebra, likely holds less conceptual clout in a 

composer’s mind than Tymoczko’s Cartesian voice-leading spaces, which themselves 

attempt to equate distance with voice-leading efficiency—a salient and oft-considered 

compositional impulse. 

6) The J-function only rounds down, not to the nearest point on the next circle. Tymoczko 

claims this “has important theoretical implications, effectively obscuring the conceptual 

meaning of the entire approach.”  11

It is not the aim of this paper to address Tymoczko’s concerns (though they are worth addressing 

in detail). Rather, I wish to uncover and question some of the assumptions embedded into FiPS and in 

9 Tymoczko (2013) “Geometry and the quest for theoretical generality” ​Journal of Mathematics and Music ​Vol. 7.2 
139 
Callender et. al (2008) “Generalized Voice-Leading Spaces” ​Science​ Vol. 320.346 
10 I should amend: scalar context ​can be​ ill-defined in FiPS. 
11 Tymoczko (2013) “Geometry and the quest for theoretical generality” ​Journal of Mathematics and Music ​Vol. 7.2 
140 
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answering these questions to theorize a more general form of the J-function. In doing so we will find that 

many of Tymockzo’s concerns resolve themselves quite nicely. I contend that this theoretical exercise 

neither proves nor disproves the non-triviality of FiPS in relation to other spaces; it reinforces the fact 

that, like any other tool, its analytical quality derives from the actions of the user. 

II. Fun with Circles 

FiPS operates under three unspoken assumptions beside its formal rules. First, we assume octave 

equivalence. This is by no means an odd or unintuitive exercise—but it necessarily excludes scales that do 

not repeat at the octave. I leave the question of non-octave-repeating FiPS open for now. Second, we 

assume symmetry in our ‘chromatic’ output universe.  In the common  configuration, for27 → 1  12

example, we arrange our 12 chromatic notes equally around the octave. Thus our J function finds the 

maximally even arrangement of seven notes ​specifically in 12-tone equal temperament​. But we have the 

whole circle—geometrically, we could easily model alternate tuning systems by moving around points on 

the outermost circle, and our results would be significantly different! But the J-function does not allow 

this. Already we see a break between our geometric and algebraic models. And this reveals the third and 

most limiting assumption: that maximal evenness is an important property of maximally even sets. 

An example to show why this matters: we can define the diatonic collection as the maximally 

even set of notes in 12-tone equal-tempered pitch-class space. But there are infinitely many ways to 

define the diatonic collection in terms of ​quantization​ that do not rely on the J-function’s definition of 

maximal evenness! We could quantize seven equal-spaced notes to 

twelve-note-space-with-a-pentatonic-collection- removed; we could move one of our inner seven points 

some small amount clockwise and rest assured that nothing changes in the output; we could/840 < ε < 1  

try a  or an or any where (and none of these necessarily27 → 7 → 1 28 → 7 → 1 2x → 7 → 1 x > 7  

evenly spaced!) and still change nothing. Except—once we set the circles in motion we won’t necessarily 

12 In order to get a first-order maximally even set out of any given (though not a specific) output configuration, our 
input must be perfectly even. This is why I make the distinction between input and output. 
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get a progression by circle of fifths, but rather some other sequence that derives ​not​ from any inherent 

properties of the diatonic collection, but simply from the geometry that we consciously built in order to 

represent it!  

Fig. 2: five different ways to generate the Db diatonic collection 

 

The point here is that FiPS, under its current constraints, conflates intrinsic and extrinsic 

properties of the sets that it is confined to generate. Maximal evenness is one property that certain 

collections ​have​, not a definition of what they ​are​. And the quantization of maximally even sets to one 

another is a specific form of the general act of quantizing any set to any other set. Here we get a taste of 

Tymoczko’s frustration: the J-function isn’t a ​definition​ of FiPS; it’s the S constraint on FiP! This very 

constraint forces us to add inexplicable layers in order to engineer desired outputs, unnecessarily 

complicates models of common-yet-uneven collections, limits the generality of our geometries, clutters 

up our conceptual understanding of quantization. By doing away with the need for symmetry, we can 

construct a far more robust theory of contextualization via quantization, a theory that has immediate 

analytical potential for a wide variety of musics. 

III. Fun with Rectangles 

So what is FiP without S? Having done away with the J function, we have to define a new, 

analogous function that drives the engine of the filtered points. It turns out to be quite simple: given a set 
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of points , each with a given radius  and phase  (formally: , we sayP p r θ r , θ 0, )})  P ⊆ { ∈ N  ∈ [ 1  

point is ​active​ iff:p∈ P  

a) or(p) ,  r = 1  

b) For some active , andq p  | r(p ) (q) }  p∈ P 0 = { 0 0 = r + 1  

θ(p) (q))%1 θ(p ) (q))%1 ∀p =  ( − θ < ( 0 − θ 0 / p  

Which is to say: all points at radius 1 are active; and for any active point the nearest point 

counterclockwise on the next radius is also active. The astute reader will note that every configuration 

possible through the J-function is also possible with this algorithm. This one also allows configurations 

that are not symmetric. As before, to rotate a circle we just increment the phase of all points of a certain 

radius by some value ​m​. 

Of course, in doing this we have greatly expanded the set of possible harmonies configurable 

through FiP. And while one could—and should—spend hours graphically realizing various configurations 

instead of, say, making timely progress on one’s term paper, this approach ultimately does not help 

predict the possible harmonies achievable through the various rotations of a given configuration. To solve 

this issue, we can import the concept of a configuration space—a map of all the possible resultant 

harmonies given the rotations of some amount of circles in a configuration (one axis per circle), assuming 

all the other circles are still at some known configuration. Reproduced below from Plotkin (2019) is a 

 FiPS configuration space focusing on the two inner circles.  An important property of23 → 8 → 1  13

these spaces is that the set of paths possible along a space are exactly the progressions possible as a result 

of some continuous rotation of the circles represented—and any straight lines represent progressions that 

result from rotation at some constant speed. 

 

13 ​Plotkin (2019), “Chord Proximity, Parsimony, and Analysis with Filtered Point-Symmetry” ​Music Theory Online 
Vol. 25.2 
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Fig. 3: FiPS configuration with Neo-Riemannian cycles shown as paths.23 → 8 → 1  

Small changes in configuration can lead to incredible differences in configuration space—a fact 

worth exploring in detail in a much longer paper.  Let us derive one such alternative space, and let us 14

derive it in a manner that holds an intuitive analytic value. The  symmetric configuration23 → 7 → 1  

makes intuitive sense as a means of understanding triads in a diatonic context, and that diatonic context in 

a chromatic context via modulation along the circle of fifths. Plotkin (2019) explores a 23 → 7 → 7 → 1  

configuration, where the doubling of the 7-filters allows us to transpose our triads by diatonic steps.  The 15

configuration space of the innermost two circles is reproduced below: 

 

Fig. 4:  configuration space23 → 7 → 7 → 1  

14 Let’s talk after the break. 
15 ​Plotkin (2019), “Chord Proximity, Parsimony, and Analysis with Filtered Point-Symmetry” ​Music Theory Online 
Vol. 25.2 
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But suppose we had the inner 7-filter output to a 7[​diatonic​] filter—that is, the actual positions in 

pitch-class space of the notes in the diatonic collection, set arbitrarily to C major.  The configuration and 16

a section of the configuration space are shown below. 

 

Fig. 5: configuration and section of configuration space. The 3-filter spins[C diatonic]  3 → 7 → 7  

clockwise with respect to the 7-filter as we travel right along the configuration space; the 7-filter spins 

clockwise with respect to the 7[diatonic] filter as we go downwards. 

The space hints at the conceptual payload for this altered configuration: while we retain the 

third-relations and scale-step relations between chords as seen in Plotkin’s symmetric configuration, the 

slight irregularities between our perfectly even and maximally even concepts of diatonicism uncover 

some intermediate spaces between the regular diatonic triads—that is, we have uncovered a space for 

suspensions and other irregular trichords. In doing so we have ruptured some of our previous connections 

between triads—it seems that relationships by third are robust under asymmetric conditions, but other 

relationships are not. The rules of voice-leading are very clear here: lateral and vertical motion 

16 This is analogous—but not equivalent—to collapsing together the outermost two circles in Plotkin’s 
configuration. Another possibility might be configuring the center circle in {0, 4, 7} positions, or doing away with 
the perfectly even 7-filter entirely. These would all produce different variants of the same general idea: triads 
moving in a diatonic environment. We’re simply playing with how generally or specifically we would like to define 
a triad and a diatonic environment. 
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corresponds to a voice-leading by one scale step or third (the latter only in certain horizontal moves); 

diagonal motion corresponds to voice-leading by two scale steps or thirds. In short: we retain the power 

and logic of the symmetric , but situate it in a more diverse field of possible harmonies,23 → 7 → 7 → 1  

one better attuned to the continuous motion that underlies our understanding of voice-leading distance. 

And it’s three-colorable! 

Further study of asymmetrical configurations is sure to yield more powerful and perhaps even 

simpler results than this particular exercise. For the sake of brevity I will limit my explorations in this 

paper to the altered  configuration as described above. I expect, upon the[diatonic]3 → 7 → 7  

completion of satisfactory exploration into this topic, to put together a more comprehensive ​general 

theory of FiP, or at least to describe a few more of its conceptually potent applications. 

 

IV. Case Study: Chopin Op. 28 No. 9  

To test the analytical value of our expanded FiP machine—beyond pure speculation—let us take 

a look at the last four measures of Chopin’s Prelude Op. 28 No. 9 in E major, reproduced from Plotkin 

(2019) below:  17

Fig. 6: Last four measures, Chopin Prelude Op. 28 No. 9 in E major 

17 Plotkin (2019), “Chord Proximity, Parsimony, and Analysis with Filtered Point-Symmetry” ​Music Theory Online 
Vol. 25.2 
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We start with a I-V-I in E major, and then a tonally ambiguous Am chord leads to a I-V-I in F 

major, a semitone up. Then something similar happens: a Bb chord leads to a G minor chord, two 

semitones up from F major. Then the sequence breaks: a i-V-I on G is followed by a B major—which is 

immediately recontextualized as a V of E major, and then the passage ends. 

What is the appropriate space for such a progression? It seems to fit very elegantly in a simple 

Tonnetz, for one. And since the Tonnetz is isomorphic to a  symmetric configuration space,23 → 8 → 1  

the progression is elegantly traced out there as well.  Both are shown below: 18

 

Fig. 7: Chopin’s quasi-sequential progression on a Tonnetz, starting at point 1 and changing 

color with each new chord through point 2. Note the self-similar movements through intersections 

 

The implication here is that one may hear this passage as a series of P, L, and R transformations 

and their various combinations. While that’s possible, this interpretation sacrifices notions of traditional 

functional harmony, i.e the dominant function of the chords B, C and D—even though Chopin all but 

hammers in a sense of functionality with his I-V-I progressions. 

 

18 ​ibid. 
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Fig. 8: The same passage on the FiPS configuration space23 → 8 → 1  

 

Plotkin (2019) suggests an alternative reading of the piece: in a  configuration,23 → 7 → 7 → 1  

we can constrain ourselves to the triads in one diatonic collection—the whole of which we can then rotate 

through a second 12-filter in order to transpose upwards by semitones. This amounts to a monstrous 

 configuration. The mechanism is clunky, but the conceptual basis is salient: We2 23 → 7 → 7 → 1 → 1  

are looking at triads in a diatonic space; and we are progressively transposing that diatonic space upwards. 

In order to visualize this, we can imagine the familiar  configuration space, focusing on23 → 7 → 7 → 1  

the innermost two circles, set to E major. We then overlay the same space set to F major and G major—in 

essence, squashing and twisting a three-dimensional space into a two-dimensional plane. We can think of 

this as a chord-function space that is movable through chromatic transpositions, with I in the middle, V to 

the top right, IV to the bottom left, and so on. I have mapped the progression on that space, separating the 

progression by measure (with the last 2 together) in order to avoid clutter. 

Immediately we note the same loop pattern we saw in the Tonnetz, now confined to the top right 

corner. These are the I-V-I progressions. We no longer hear modulatory pivot chords as tonally 

ambiguous PLR transformations, however—simply as functional chords in the new diatonic transposition. 

Interestingly, we do not enter the key of G minor here (recall that FiPS has trouble with non-ME sets like 
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minor scales with a sharp seventh scale degree) but rather G Dorian. So we still sacrifice a lot of 

information about how one may hear this passage; and we’ve gone through a lot of math to come to an 

analysis that is musically rather straightforward—simply that the passage could be heard entirely 

diatonically, with no chromatic ambiguity. 

 

Fig. 9: Chopin’s progression in  ​FiPS configuration space. From left to2 23 → 7 → 7 → 1 → 1  

right: the first measure, second measure, and third and fourth measures of the passage. 

 

 

 

 

Finally, let us test out our engineered configuration. In order to move from[diatonic]3 → 7 → 7  

key to key, we have to situate it inside of a 12-filter. This allows us to transpose everything by semitones, 

just like in the . Let us enact the same mental squashing exercise to arrive at the2 23 → 7 → 7 → 1 → 1  

following compound configuration space: 

Fig. 10:  ​FiP configuration space, collapsed to show multiple transpositions.[diatonic] 23 → 7 → 7 → 1  

Non-triadic trichords not notated. 
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Immediately we see a problem: there is no path leading from a I chord to a IV chord! When we 

reach the fourth beat of the second measure, we can’t get from F to Bb. And when we get to Gm, we can’t 

reach D. Has FiP failed us so soon? Not quite—recall that this space squashes down ​every​ transposition of 

a diatonic collection into this space. Figure 10 only shows 3 of the 12 chords inhabiting each region. We 

can solve our problem by simply considering one more possible diatonic collection: Eb major. 

 

Fig. 11:  ​FiP configuration space, showing Eb, E, F and G diatonic[diatonic] 23 → 7 → 7 → 1  

collections. 

 

This solves our problem quite nicely, as we can chart the following set of paths: 
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Fig. 12: Chopin’s progression in  ​FiP configuration space. From left[diatonic] 23 → 7 → 7 → 1  

to right: the first, second, third, and fourth measure of the passage. 

 

And now we’ve uncovered a far less obvious interpretation of the passage! We restrict ourselves 

into looking at every chord as a I/i, iii, or V of a diatonic collection. In doing so we situate the Bb to G 

minor progression as a deceptive cadence in Eb major. Now we have doubly highlighted the sequential or 

iterative structure of the passage—first by introducing extreme regularity in our motion through our 

chosen space, moving back and forth between the same two regions all but twice; second by suggesting a 

tonal gravity around Eb during the first beat of the third measure. We transpose our diatonic collection ​up 

a semitone from E to F, and then ​down ​two semitones into Eb before ricocheting up four semitones into 

G. Our sequence of roots is not ​ascending​ but ​oscillating​ around E—hearing it that way makes that final 

V-I cadence into E not a deviation from the sequence, but its logical conclusion: the spring settles into 

place at equilibrium. 

V. Conclusion 

Our asymmetrical FiP configuration allows us to uncover a much more nuanced yet equally valid 

possible hearing of Chopin’s prelude as compared to the alternatives posed by the Tonnetz and FiPS. And 

the linkage of conceptual rigor to a highly specific geometry allows us to interpret the challenges and 

workarounds of its topology in an analytically productive way. Therein lies the potential of FiP: the 
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ability to generate the possibility space for incredibly specific musical situations in a relatively simple 

way, without the need to jump through the hoops of iterated symmetry.  19

A more important point: this case study supports my notion that there is no unifying property of 

18th and 19th-century tonality. Maximal evenness, neo-Riemannian transformations, and voice-leading 

efficiency are tools that we can use to understand and hear certain progressions, but the context of a 

passage can endlessly and ambiguously redefine the relationship between one harmony and the next. By 

taking maximal evenness out of the equation in FiPS, I don’t necessarily intend to create the universal 

computer of harmonies through whose various configurations we may gain infinite wisdom. I simply hope 

to present it as a more powerful tool for addressing music-analytic problems in less-than-obvious ways. 

19 Pun intended. 


